peer reviewed publications by Uwe Harlander
submitted
[69] S. Abide, I. Raspo, U. Harlander, and S. Viazzo, On the influence the heat transfer at the free surface of a thermally-driven rotating annulus. Under preparation.
[68] Makrina Agaoglou, Ana M. Mancho, García Garrido Víctor José, and Uwe Harlander 2022, A kinematic model of transport in a baroclinic wave. Under preparation.
[67] Vincze, M., et al. 2022, Laboratory experiments on the scaling properties of extreme temperature fluctuations in the mid-latitude atmosphere, submitted to “Scientific Reports”
[66] Ion Dan Borcia, Rodica Borcia, Sebastian Richter, Franz-Theo Schön, Uwe Harlander, and Michael Bestehorn 2022, Wave propagation in a circular channel – sloshing and resonance. Submitted to “The European Physical Journal Special Topics”.
[65] G. Melettia, S. Abide, S. Viazzo, and U. Harlander (2022) A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution, submitted to Philisophical Transacrions A
[64] Labarbe, Joris, Le Gal, Patrice, Harlander, Uwe, Le Dizès, Stéphane, and Favier, Benjamin (2022). Localized layers of turbulence in vertically-stratified plane Poiseuille flow, https://arxiv.org/abs/2207.09131
[63] T. Seelig, K.K. Kielczewski, E.M. Tuliszka-Sznitko, C. Egbers, P. Bontoux, and U. Harlander. A benchmark study of turbulent flows in long enclosed rotor-stator cavities.
Submitted.
2022
[62] Harlander, U.; Borcia, I.D.; Vincze, M.; Rodda, C. Probability Distribution of Extreme Events in a Baroclinic Wave Laboratory Experiment. Fluids 2022, 7, 274. https://doi.org/10.3390/fluids7080274
[61] Rodda, C., Harlander, U., Vincze, M. 2022, Jet stream variability in a polar warming scenario – a laboratory perspective, Weather Clim. Dynam., 3, 937-950, 10.5194/wcd-3-937-2022, https://wcd.copernicus.org/articles/3/937/2022/
2021
[60] M. Vincze, T. Boz´oki, M. Herein, I.D. Borcia, U. Harlander, A. Horics´anyi, A. Nyerges, C. Rodda, A. P´al, J. P´alfy, The Drake Passage opening from an experimental fluid dynamics point of view. Sci Rep 11, 19951 (2021). https://doi.org/10.1038/s41598-021-99123-0
[59] U. Harlander & M. V. Kurgansky, Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophysical & Astrophysical Fluid Dynamics, 115:5-6, 612-647, DOI: 10.1080/03091929.2021.1943379
[58] Le Gal, P., Harlander, U., Borcia, I., Le Dizès, S., Chen, J., & Favier, B. Instability of vertically stratified horizontal plane Poiseuille flow. Journal of Fluid Mechanics, 907, R1. doi:10.1017/jfm.2020.917
2020
[57] W. Xu, U. Harlander. Inertial mode interactions in a rotating tilted cylindrical annulus with free surface. Rev. Phys. Fluids., 5(9), 094801-21, DOI: 10.1103/PhysRevFluids.5.094801.
[56] G. Meletti, S. Abide, S. Viazzo, A. Krebs & U. Harlander, Experiments and long-term high-performance computations on amplitude modulations of strato-rotational flows, Geophysical & Astrophysical Fluid Dynamics, DOI: 10.1080/03091929.2020.1795647
[55] C. Rodda and U. Harlander, Transition from geostrophic flows to inertia-gravity waves in the spectrum of a differentially heated rotating annulus experiment, Journal of the Atmospheric Sciences, 77(8), 2793-2806.
[54] I.D. Borcia, R. Borcia, Wenchao Xu, M. Bestehorn, S. Richter, and U. Harlander. Undular bores in a large circular channel. European Journal of Mechanics - B/Fluids, 79, 67-73, 2020.
[53] M.V. Kurgansky, T. Seelig, M. Klein, A. Will, and U. Harlander. Mean flow generation due to longitudinal librations of side-walls of a rotating annulus. Geophysical & Astrophysical Fluid Dynamics, DOI: 10.1080/03091929.2019.1692829, 2020.
2019
[52] P. Le Gal, U. Harlander, I. Borcia, S. Le Dizes, J. Chen, B. Favier. L'instabilité linéaire de l'écoulement de Poiseuille plan stratifié. 24th Congrès Français de Mécanique, Brest, 26 to 30 August 2019.
[51] C. Rodda, S. Hien, U. Achatz, and U. Harlander. A new atmospheric-like dierentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Exp Fluids, 61, 2, https://doi.org/10.1007/s00348-019-2825-z, 2020.
[50] I.D. Borcia, R. Borcia, S. Richter, Wenchao Xu, M. Bestehorn, and U. Harlander. Horizontal Faraday instability in a circular channel. Proceedings in Applied Mathematics and Mechanics (PAMM), 19, https://doi.org/10.1002/pamm.201900242, 2019.
[49] M. Hoff, U. Harlander. Stewarson layer instability in a wide-gap spherical Couette experiment: Rossby number dependence. Journal of Fluid Mechanics, 878, 522-543. doi:10.1017/jfm.2019.636, 2019.
2018
[48] U. Harlander, I.D. Borcia, A. Krebs. Nonnormality increases variance of gravity waves trapped in a tilted box. Geophys. & Astrophys. Fluid Dyn. DOI:10.1080/03091929.2018.1549660, 2018.
[47] A. Ghasemi V, M. Klein, A. Will, and U. Harlander. Mean flow generation by an intermittently unstable boundary layer over a sloping wall. J. Fluid Mech., 853, 111-149, 2018.
[46] T. Seelig, U. Harlander, M. Gellert. Experimental investigation of stratorotational instability using a thermally stratified system: instability, waves and associated momentum flux. Geophys. Astrophys. Fluid Dyn., 112, 239-264, 2018.
[45] C. Rodda, I.D. Borcia, P. Le Gal, M. Vincze, and U. Harlander. Eady, Kelvin, and inertia-gravity waves in the barostrat instability experiment. Geophysical and Astrophysical Fluid Dynamics,
https://doi.org/10.1080/03091929.2018.1461858, 2018.
[44] Th. v. Larcher, S. Viazzo, U. Harlander, M. Vincze, and A. Randriamampianina. Instabilities and small-scale waves within the Stewartson layers of a thermally
driven rotating annulus. J. Fluid Mech., 841, 380-407, 2018.
2017
[43] G. Rüdiger, T. Seelig, M. Schultz, M. Gellert, C. Egbers, U. Harlander. The stratorotational instability of
Taylor-Couette flows of moderate Reynolds numbers. Geophysical and Astrophysical Fluid Dynamics, 111, 429–447, 2017.
[42] M. Vincze, I.D. Borcia, U. Harlander. Temperature fluctuations in a changing climate: an ensemblebased experimental approach.
Scientific Reports, 7:254, DOI:10.1038/s41598-017-00319-0, 2017.
2016
[41] R.C.A. van der Veen, S.G. Huisman, S. Merbold, U. Harlander, C. Egbers, D. Lohse, C. Sun. Taylor-Couette turbulence at radius ratio of eta=0.5:
scaling, flow structures and plumes. Journal of Fluid Mechanics, 799, 334-351, 2016.
[40] M. Hoff, U. Harlander, and S.A. Triana. Study of turbulence and interacting inertial modes in a differentially rotating
spherical shell experiment. Physical Review Fluids, 1, 043701, 2016.
[39] M. Hoff, U. Harlander, and C. Egbers. Experimental survey of linear and non-linear inertial waves and wave instabilities in a spherical shell.
Journal of Fluid Mechanics, 789, 589-616, 2016.
[38] M. Vincze, I.D. Borcia, U. Harlander, and P. Le Gal. Double-diffusive convection and baroclinic instability
in a differentially heated and initially stratified rotating system: the barostrat instability.
Fluid Dyn. Res., 48, 061414 (19pp), doi: 10.1088/0169-5983/48/6/061414, 2016.
[37] A. Ghasemi, M. Klein, U. Harlander, M. V. Kurgansky, E. Schaller, A. Will. Mean flow generation by Goertler vortices in a rotating annulus with librating side walls.
Physics of Fluids, 28, 056603, 2016.
2015
[36] T. Seelig and U. Harlander. Can zonally symmetric inertial waves drive an oscillating zonal mean flow?
Geophysical and Astrophysical Fluid Dynamics, 109, 541-566, 2015.
[35] U. Harlander, Th. v. Larcher, G. B. Wright, M. Hoff, and C. Egbers. Orthogonal decomposition methods to analyze
PIV, LDV and thermography data of a thermally driven rotating annulus laboratory experiment. AGU Geophys. Monograph
'Modelling Atmospheric and Oceanic flows: insights from laboratory experiments and numerical simulations', 205, 315-336, 2015.
[34] M. Hoff, U. Harlander, and C. Egbers. Empirical singular vectors of baroclinic flows deduced from
experimental data of a differentially heated rotating annulus. Meteorologische Zeitschrift, 23, 581-597, 2015.
[33] S. Borchert, U. Achatz, S. Remmler, S. Hickel, U. Harlander, M. Vincze, K. D. Alexandrov, F. Rieper, T. Heppelmann,
and S. I. Dolaptchiev. Finite-Volume Models with Implicit Subgrid-Scale Parameterization for the
Differentially Heated Rotating Annulus. Meteorologische Zeitschrift, 23, 561-580, 2015.
[32] M. Vincze, S. Borchert, U. Achatz, Th. v. Larcher, M.
Baumann, C. Hertel, S. Remmler, T. Beck, K. Alexandrov, C.
Egbers, J. Froehlich, V. Heuveline, S. Hickel, and U. Harlander. Benchmarking in a rotating annulus: a comparative
experimental and numerical study of baroclinic wave dynamics. Meteorologische Zeitschrift, 23, 611-635, 2015.
2014
[31] I. D. Borcia, A. Ghasemi V., and U. Harlander. Inertial wave mode excitation inside a rotating cylindrical
container with librating walls. Fluid Dyn. Res., 46, 041423, (19pp),doi: 10.1088/0169-5983/46/4/041423, 2014.
[30] M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi V., I. D. Borcia, Andreas Will, E. Schaller, C. Egbers, and
Uwe Harlander. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, J. Fluid Mech., 751, 255-297, 2014.
[29] M. Vincze, U. Harlander, Th. von Larcher, and C. Egbers. An experimental study of regime transitions in a
differentially heated baroclinic annulus with flat and sloping bottom topographies. Nonlin. Processes Geophys., 21, 237-259, 2014.
2013
[28] S. Koch, U. Harlander, C. Egbers, and R. Hollerbach. Inertial waves in a spherical shell induced by librations
of the inner sphere:laboratory experiments and numerical simulations. Fluid Dynamics Research,
45, 035504, (19pp), 2013.
[27] I. D. Borcia and U. Harlander. Inertial waves in a rotating annulus with inclined inner cylinder. Theoret. Comp.
Fluid Dynamics, 27, 397-413, 2013.
[26] T. Seelig, U. Harlander, R. Faulwetter, and C. Egbers.
Irregularity and singular vector growth in the differentially heated rotating annulus.
Theoret. Comp. Fluid Dynamics, 27, 415-432, 2013.
2012
[25] U. Harlander, G. B. Wright, and C. Egbers. Reconstruction of the 3D flow field in a differentially heated rotating annulus by synchronized particle image velocimetry
and infrared thermography measurements. In: 16th International symposium on applied laser techniques to fluid mechanics, Lisbon, Portugal, 2012
[24] U. Harlander, J. Wenzel, K. Alexandrov, Y. Wang, and C. Egbers.
Simultaneous PIV- and thermographymeasurements of partially blocked flow in a heated rotating annulus.
Exp. Fluids, 52, 1077-1085, doi:10.1007/s00348-011-1195-y, 2012.
2011
[23] U. Harlander, Th. v. Larcher, Y. Wang, C. Egbers.
PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus.
Exp. Fluids, 51, 37-49, doi:10.1007/s00348-009-0792-5, 2011.
[22] S. Koch, U. Harlander, R. Hollerbach, and C. Egbers. Laboratory experiments and numerical simulations of
inertial wave-interactions in a rotating spherical shell. Journal of Physics: Conference Series, 318, 082022, doi:10.1088/1742-6596/318/8/082022, 2011.
2010
[21] A. Swart, A. Manders, U. Harlander, and L. R. M. Maas.
Experimental observations of strong mixing due to internal wave focusing over sloping terrain.
Dynamics of Atmospheres and Oceans, 50, 16-34, 2010.
2009
[20] U. Harlander, R. Faulwetter, K. Alexandrov, and C. Egbers.
Estimating local instabilities from data with application to geophysical flows.
Advances in Turbulence XII, edited by B. Eckardt, Springer Proceedings in Physics 132, 163-167, 2009.
[18] U. Harlander, H. Ridderinkhof., M.W. Schouten, and W.P.M. De Ruijter.
Long term observations of transport, eddies, and Rossby waves in the Mozambique Channel.
Journal of Geophysical Research, 114, C02003, doi:10.1029/208JC004846, 2009.
2008
[17] U. Harlander.
Towards an analytical understanding of internal wave attractors.
Adv. Geosci., 15, 3-9, 2008.
[16] U. Harlander, A. Will, M. V. Kurgansky, M. Ehrendorfer (Editor).
Editorial: Topics in modern geophysical fluid dynamics.
Adv. Geosci., 15, 1, 2008.
2007
[15] U. Harlander and L.R.M. Maas.
Two alternatives for solving hyperbolic boundary value problems in
geophysical fluid dynamics.
J. Fluid. Mech., 588, 331-351, 2007.
[14] U. Harlander and L. R. M. Maas.
Internal boundary layers in a well mixed equatorial atmosphere/ocean.
Dynamics of Atmospheres and Oceans, 44, 1-28, 2007.
[13] L.R.M. Maas and U. Harlander.
Equatorial wave attractors and inertial oscillations.
J. Fluid Mech., 570, 47-67, 2007.
2006
[12] U. Harlander, A. Hense, A. Will, and M. Kurgansky.
Editorial: New aspects of geophysical fluid dynamics.
Meteorologische Zeitschrift, 15, 387-388, 2006.
[11] U. Harlander and L.R.M. Maas.
Characteristics and energy rays of equatorially trapped, zonally symmetric
internal waves.
Meteorologische Zeitschrift, 15, 439-450, 2006.
[10] A. Will, U. Harlander, and W. Metz.
Climatological relevance of leading seasonal singular vectors.
Part I: Energy, Enstrophy and spatio-temporal variability.
Meteorologische Zeitschrift, 15, 463-472, 2006.
2005
[9] U. Harlander.
A high latitude quasigeostrophic delta plane model
derived from spherical geometry.
Tellus, 57A, 43-54, 2005.
2004
[8] U. Harlander and L.R.M.
Maas. On quasigeostrophic normal modes
in ocean models: weakly nonseparable
situation. J. Phys. Oceanogr., 34, 2086-2095, 2004.
2002
[7] U.Harlander. Rossby
wave propagation in atmosphere and ocean.
Habilitationsschrift Univ. Leipzig, Wiss. Mitt. Band 29,
81pp, 2002.Habil.pdf
[6] U.Harlander. Rossby
waves in zonal barotropic flows with
pseudo critical levels. J. Atmos. Sci., 59,
2665-2680, 2002.
2001
[5]
U.Harlander, A.Gassmann, and W.Metz.
Stationary Rossby wave propagation in a
shear flow along a reflecting boundary.
Meteorol. Atmos. Phys., 78, 245-260, 2001.
2000
[4] U. Harlander,
H.-J.Schoenfeldt, and W. Metz.
Rossby waveguides in high-latitude shear
flows with boundaries.
J. Geophys. Res., 105, 17063-17078, 2000.
1999
[3] M. Simmel and U.Harlander.
On the errors of spectral shallow water
limited-area model simulations using an extension technique.
Contr. Atmos. Phys., 72, 267-281, 1999.
1997
[2] U.Harlander. Flow climatology in
the Alpine region as simulated by a simple
shallow water model. Contr. Atmos. Phys., 70, 285-299, 1997.
1994
[1] U.Harlander. Flow climatology of the Alpine region: stability and
future change.
Dissertation Ludwig-Maximilians University Munich, 146pp, 1994.