submitted

[8] P. Le Gal, U. Harlander, I. Borcia, S. Le Dizes, J. Chen, B. Favier. L'instabilité linéaire de l'écoulement de Poiseuille plan stratifié. Submitted to 24th Congrès Français de Mécanique, Brest, 26 to 30 August 2019.

[7] W. Xu, U. Harlander. Inertial mode interactions in a rotating tilted cylindrical annulus with free surface. To be submitted to Rev. Phys. Fluids.

[6] C. Rodda, S. Hien, U. Achatz, and U. Harlander. A new atmospheric-like dierentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Revised, Exp. Fluids.

[5] I.D. Borcia, R. Borcia, S. Richter, Wenchao Xu, M. Bestehorn, and U. Harlander. Horizontal Faraday instability in a circular channel. Submitted, Proceedings in Applied Mathematics and Mechanics

[4] I.D. Borcia, R. Borcia, Wenchao Xu, M. Bestehorn, S. Richter, and U. Harlander. Undular bores in a large circular channel. Revised, European Journal of Mechanics - B/Fluids

[3] M. Hoff, U. Harlander. Stewarson layer instability in a wide-gap spherical Couette experiment: Rossby number dependence. Revised, J. Fluid Mech.

[2] M.V. Kurgansky, T. Seelig, M. Klein, A. Will, and U. Harlander. Mean flow generation due to longitudinal librations of side-walls of a rotating annulus. Submitted to Geophysical and Astrophysical Fluid Dynamics.

[1] T. Seelig, K.K. Kielczewski, E.M. Tuliszka-Sznitko, C. Egbers, P. Bontoux, and U. Harlander. A benchmark study of turbulent flows in long enclosed rotor-stator cavities. Submitted.

2018

[48] U. Harlander, I.D. Borcia, A. Krebs. Nonnormality increases variance of gravity waves trapped in a tilted box. Geophys. & Astrophys. Fluid Dyn. DOI:10.1080/03091929.2018.1549660, 2018.

[47] A. Ghasemi V, M. Klein, A. Will, and U. Harlander. Mean flow generation by an intermittently unstable boundary layer over a sloping wall. J. Fluid Mech., 853, 111-149, 2018.

[46] T. Seelig, U. Harlander, M. Gellert. Experimental investigation of stratorotational instability using a thermally stratified system: instability, waves and associated momentum flux. Geophys. Astrophys. Fluid Dyn., 112, 239-264, 2018.

[45] C. Rodda, I.D. Borcia, P. Le Gal, M. Vincze, and U. Harlander. Eady, Kelvin, and inertia-gravity waves in the barostrat instability experiment. Geophysical and Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2018.1461858, 2018.

[44] Th. v. Larcher, S. Viazzo, U. Harlander, M. Vincze, and A. Randriamampianina. Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus. J. Fluid Mech., 841, 380-407, 2018.

2017

[43] G. Rüdiger, T. Seelig, M. Schultz, M. Gellert, C. Egbers, U. Harlander. The stratorotational instability of Taylor-Couette flows of moderate Reynolds numbers. Geophysical and Astrophysical Fluid Dynamics, 111, 429–447, 2017.

[42] M. Vincze, I.D. Borcia, U. Harlander. Temperature fluctuations in a changing climate: an ensemblebased experimental approach. Scientific Reports, 7:254, DOI:10.1038/s41598-017-00319-0, 2017.

2016

[41] R.C.A. van der Veen, S.G. Huisman, S. Merbold, U. Harlander, C. Egbers, D. Lohse, C. Sun. Taylor-Couette turbulence at radius ratio of eta=0.5: scaling, flow structures and plumes. Journal of Fluid Mechanics, 799, 334-351, 2016.

[40] M. Hoff, U. Harlander, and S.A. Triana. Study of turbulence and interacting inertial modes in a differentially rotating spherical shell experiment. Physical Review Fluids, 1, 043701, 2016.

[39] M. Hoff, U. Harlander, and C. Egbers. Experimental survey of linear and non-linear inertial waves and wave instabilities in a spherical shell. Journal of Fluid Mechanics, 789, 589-616, 2016.

[38] M. Vincze, I.D. Borcia, U. Harlander, and P. Le Gal. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability. Fluid Dyn. Res., 48, 061414 (19pp), doi: 10.1088/0169-5983/48/6/061414, 2016.

[37] A. Ghasemi, M. Klein, U. Harlander, M. V. Kurgansky, E. Schaller, A. Will. Mean flow generation by Goertler vortices in a rotating annulus with librating side walls. Physics of Fluids, 28, 056603, 2016.

2015

[36] T. Seelig and U. Harlander. Can zonally symmetric inertial waves drive an oscillating zonal mean flow? Geophysical and Astrophysical Fluid Dynamics, 109, 541-566, 2015.

[35] U. Harlander, Th. v. Larcher, G. B. Wright, M. Hoff, and C. Egbers. Orthogonal decomposition methods to analyze PIV, LDV and thermography data of a thermally driven rotating annulus laboratory experiment. AGU Geophys. Monograph 'Modelling Atmospheric and Oceanic flows: insights from laboratory experiments and numerical simulations', 205, 315-336, 2015.

[34] M. Hoff, U. Harlander, and C. Egbers. Empirical singular vectors of baroclinic flows deduced from experimental data of a differentially heated rotating annulus. Meteorologische Zeitschrift, 23, 581-597, 2015.

[33] S. Borchert, U. Achatz, S. Remmler, S. Hickel, U. Harlander, M. Vincze, K. D. Alexandrov, F. Rieper, T. Heppelmann, and S. I. Dolaptchiev. Finite-Volume Models with Implicit Subgrid-Scale Parameterization for the Differentially Heated Rotating Annulus. Meteorologische Zeitschrift, 23, 561-580, 2015.

[32] M. Vincze, S. Borchert, U. Achatz, Th. v. Larcher, M. Baumann, C. Hertel, S. Remmler, T. Beck, K. Alexandrov, C. Egbers, J. Froehlich, V. Heuveline, S. Hickel, and U. Harlander. Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics. Meteorologische Zeitschrift, 23, 611-635, 2015.

2014

[31] I. D. Borcia, A. Ghasemi V., and U. Harlander. Inertial wave mode excitation inside a rotating cylindrical container with librating walls. Fluid Dyn. Res., 46, 041423, (19pp),doi: 10.1088/0169-5983/46/4/041423, 2014.

[30] M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi V., I. D. Borcia, Andreas Will, E. Schaller, C. Egbers, and Uwe Harlander. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, J. Fluid Mech., 751, 255-297, 2014.

[29] M. Vincze, U. Harlander, Th. von Larcher, and C. Egbers. An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies. Nonlin. Processes Geophys., 21, 237-259, 2014.

2013

[28] S. Koch, U. Harlander, C. Egbers, and R. Hollerbach. Inertial waves in a spherical shell induced by librations of the inner sphere:laboratory experiments and numerical simulations. Fluid Dynamics Research, 45, 035504, (19pp), 2013.

[27] I. D. Borcia and U. Harlander. Inertial waves in a rotating annulus with inclined inner cylinder. Theoret. Comp. Fluid Dynamics, 27, 397-413, 2013.

[26] T. Seelig, U. Harlander, R. Faulwetter, and C. Egbers. Irregularity and singular vector growth in the differentially heated rotating annulus. Theoret. Comp. Fluid Dynamics, 27, 415-432, 2013.

2012

[25] U. Harlander, G. B. Wright, and C. Egbers. Reconstruction of the 3D flow field in a differentially heated rotating annulus by synchronized particle image velocimetry and infrared thermography measurements. In: 16th International symposium on applied laser techniques to fluid mechanics, Lisbon, Portugal, 2012

[24] U. Harlander, J. Wenzel, K. Alexandrov, Y. Wang, and C. Egbers. Simultaneous PIV- and thermographymeasurements of partially blocked flow in a heated rotating annulus. Exp. Fluids, 52, 1077-1085, doi:10.1007/s00348-011-1195-y, 2012.

2011

[23] U. Harlander, Th. v. Larcher, Y. Wang, C. Egbers. PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus. Exp. Fluids, 51, 37-49, doi:10.1007/s00348-009-0792-5, 2011.

[22] S. Koch, U. Harlander, R. Hollerbach, and C. Egbers. Laboratory experiments and numerical simulations of inertial wave-interactions in a rotating spherical shell. Journal of Physics: Conference Series, 318, 082022, doi:10.1088/1742-6596/318/8/082022, 2011.

2010

[21] A. Swart, A. Manders, U. Harlander, and L. R. M. Maas. Experimental observations of strong mixing due to internal wave focusing over sloping terrain. Dynamics of Atmospheres and Oceans, 50, 16-34, 2010.

2009

[20] U. Harlander, R. Faulwetter, K. Alexandrov, and C. Egbers. Estimating local instabilities from data with application to geophysical flows. Advances in Turbulence XII, edited by B. Eckardt, Springer Proceedings in Physics 132, 163-167, 2009.

[18] U. Harlander, H. Ridderinkhof., M.W. Schouten, and W.P.M. De Ruijter. Long term observations of transport, eddies, and Rossby waves in the Mozambique Channel. Journal of Geophysical Research, 114, C02003, doi:10.1029/208JC004846, 2009.

2008

[17] U. Harlander. Towards an analytical understanding of internal wave attractors. Adv. Geosci., 15, 3-9, 2008.

[16] U. Harlander, A. Will, M. V. Kurgansky, M. Ehrendorfer (Editor). Editorial: Topics in modern geophysical fluid dynamics. Adv. Geosci., 15, 1, 2008.

2007

[15] U. Harlander and L.R.M. Maas. Two alternatives for solving hyperbolic boundary value problems in geophysical fluid dynamics. J. Fluid. Mech., 588, 331-351, 2007.

[14] U. Harlander and L. R. M. Maas. Internal boundary layers in a well mixed equatorial atmosphere/ocean. Dynamics of Atmospheres and Oceans, 44, 1-28, 2007.

[13] L.R.M. Maas and U. Harlander. Equatorial wave attractors and inertial oscillations. J. Fluid Mech., 570, 47-67, 2007.

2006

[12] U. Harlander, A. Hense, A. Will, and M. Kurgansky. Editorial: New aspects of geophysical fluid dynamics. Meteorologische Zeitschrift, 15, 387-388, 2006.

[11] U. Harlander and L.R.M. Maas. Characteristics and energy rays of equatorially trapped, zonally symmetric internal waves. Meteorologische Zeitschrift, 15, 439-450, 2006.

[10] A. Will, U. Harlander, and W. Metz. Climatological relevance of leading seasonal singular vectors. Part I: Energy, Enstrophy and spatio-temporal variability. Meteorologische Zeitschrift, 15, 463-472, 2006.

2005

[9] U. Harlander. A high latitude quasigeostrophic delta plane model derived from spherical geometry. Tellus, 57A, 43-54, 2005.

2004

[8] U. Harlander and L.R.M. Maas. On quasigeostrophic normal modes in ocean models: weakly nonseparable situation. J. Phys. Oceanogr., 34, 2086-2095, 2004.

2002

[7] U.Harlander. Rossby wave propagation in atmosphere and ocean. Habilitationsschrift Univ. Leipzig, Wiss. Mitt. Band 29, 81pp, 2002.Habil.pdf

[6] U.Harlander. Rossby waves in zonal barotropic flows with pseudo critical levels. J. Atmos. Sci., 59, 2665-2680, 2002.

2001

[5] U.Harlander, A.Gassmann, and W.Metz. Stationary Rossby wave propagation in a shear flow along a reflecting boundary. Meteorol. Atmos. Phys., 78, 245-260, 2001.

2000

[4] U. Harlander, H.-J.Schoenfeldt, and W. Metz. Rossby waveguides in high-latitude shear flows with boundaries. J. Geophys. Res., 105, 17063-17078, 2000.

1999

[3] M. Simmel and U.Harlander. On the errors of spectral shallow water limited-area model simulations using an extension technique. Contr. Atmos. Phys., 72, 267-281, 1999.

1997

[2] U.Harlander. Flow climatology in the Alpine region as simulated by a simple shallow water model. Contr. Atmos. Phys., 70, 285-299, 1997.

1994

[1] U.Harlander. Flow climatology of the Alpine region: stability and future change. Dissertation Ludwig-Maximilians University Munich, 146pp, 1994.